Great success for CFBD members at FBDD DU 2022

The 2022 FBDD DU Conference proved to be a huge success for CFBD members. We heard fantastic presentations from the plenary speakers and fascinating stories from the presenters with a good number of Centre members represented. We saw brilliant posters and made new connections during the networking sessions. Adding to this, our members hit the jackpot with the FBDD DU presentation prizes. Congratulations to:

  • Louise Sternicki (Griffith) for winning the Best ECR Oral Presentation Award
  • Jeyan Osman (Monash) for winning the Best Student Presentation Award
  • Yildiz Tasdan (Monash) for winning the Student Presentation – Runner-Up Award
  • Max Lumetzberger (Monash) for winning the Best Poster Presentation Award
  • Evgenia Konstantinidou (Monash) for winning the Poster Presentation – Runner-Up Award

Success at the RACI 2022 National Congress

The Royal Australian Chemical Institute (RACI) is the national professional body for chemists in industry, academia and government and is the primary voice of chemistry in Australia. Every five years the RACI holds a national Congress, with the RACI 2022 National Congress held from 3 to 8 July in Brisbane. This was a significant meeting (last held in 2017) with 1,148 people registered to attend, 615 speakers, 21 exhibitors, 12 sponsors and 325 poster presentations.  

The CFBD members were heavily involved in the fabric of this significant meeting. CI Prof Sally-Ann Poulsen (Griffith Uni) was on the RACI2022 Congress Organising Committee and was Symposium Chair of the 4-day Medicinal Chemistry & Chemical Biology Symposium (the largest of all the Symposiums within the Congress). CI Prof Michael Kassiou (Uni Sydney) and Dr Louise Sternicki (Griffith Uni) were invited speakers, with Dr Luke Adams (Monash) and PhD Candidate Ashley Taylor (Monash) giving contributed talks and PhD Candidate Jamie Currie (Monash)- together showcasing the breadth of ARC CFBD research, while ARC CFBD Chief Investigators, ECRs and PhD candidates from the three universities and several of our industry partners were well represented.  We were fortunate to have a catch-up dinner during the Congress – meeting face-2-face for the first time and a lot of laughs to be had. ‘The First Scientists’ artwork for the Congress is by Artist Steven Bekue. 

Abstract submission extended – FBDD DU 2022

Good news! The abstract submission deadline for the 4th FBDD Down Under Conference will be extended to 29 July 2022.

Important Dates:
Abstract submission deadline oral presentation – 29 July 2022
Abstract submission deadline posters – 12 August 2022
Conference dinner – 28 September 2022
Registration close  – 14 September 2022 (5 pm AEST)

The conference will include workshops, scientific sessions and social events. For more details, please visit the FBDD DU website

Do you want to support this event? We offer a variety of sponsorship packages to help you promote your technology. Contact us to discuss the different options on offer.

Abstract submission open – FBDD DU 2022

We are pleased to announce that abstract submission for the 4th Fragment-Based Drug Discovery Down Under Conference 2022 is now open!


Important dates

Abstract submission deadline oral presentations:15 July 2022
Abstract submission deadline posters:12 August 2022
Registration open:20 June 2022
Registration close: 14 September 2022

Visit https://fbdddownunder.com.au/ to register your attendance.

We are looking forward to meeting everyone back in Melbourne from 28 to 30 September 2022!

Save the date – FBDD DU 2022

The next Fragment-Based Drug Design Down Under Conference will be held at Monash Parkville Campus, Melbourne from 28 to 30 September 2022

The conference will include workshops, scientific sessions and social events. There will be poster and oral presentation prizes for student and ECR delegates.

Topics to be covered are library design, fragment screening, structural biology, computation chemistry, fragment-to-hit-to-lead chemistry and success stories.

Submission deadlines:

  • Oral presentation abstracts – 15 July 2022
  • Poster abstracts – 12 August 2022

For more information, visit fbdddownunder.com.au.

A truly collaborative work – new paper on DsbA

Not one but five CFBD members from our three nodes published a paper on DsbA titled “Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of Burkholderia pseudomallei DsbA” in Acta Crystallographica Section D.

Abstract

Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic’ pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (Kd) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.

Read the full article here.